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We consider the small-Rossby-number flow of a fluid past an obstacle in a coordinate 
frame in which the rotation rate varies linearly in the direction normal to the flow 
in a manner that models the variation of the Coriolis force for midlatitude planetary 
motions. The eastward flow is characterized by strong upstream divergence of the 
streamlines like that noted by Davies & Boyer (1982), and a similarly severe 
streamline convergence in the lee of the obstacle. Such a structure occurs for small 
values of the /?-parameter that measures the importance of the lateral angular- 
velocity variation. In  this parameter range, Rossby waves occur, but are confined 
to a narrow region in the lee of the object. The presence of these waves modifies the 
edge velocity ‘seen’ by the Stewartson quarter layer in such a way as to delay the 
onset of separation beyond what one might expect based on the analysis of Walker 
& Stewartson (1974) for a flow without beta-effect. 

1. Introduction 
The flow of a rotating fluid past an obstacle generates a variety of interesting 

phenomena (see McCartney (1975) for a summary of the theoretical work to that date) 
including Taylor columns, inertial waves, and wakes that may, in some parameter 
rqnges, include vortical structures. In  such a flow, as in the case of a non-rotating 
fluid, separation of the boundary layer(s) on the surface of the object, when such layers 
exist, is likely to be the origin of the vorticity in such a wake. A fist step toward 
understanding such features is the investigation of the separation phenomenon as it  
occurs in such a flow. 

Walker & Stewartson (1972, 1974) and Crissali & Walker (1976) investigated the 
nature of separation for flow past an object in a uniformly rotating frame; in that 
case a point of zero skin friction occurs in the #-layer that bounds the Taylor column 
associated with the object. They found that the problem is mathematically identical 
with a certain MHD problem studied in detail by Leibovich (1967) and Buckmaster 
(1969). Walker & Stewartson (1974) found, for a fluid layer of depth h flowing past 
a hemisphere of radius ah, that separation will occur whenever the Rossby number 
Ro = U/Qh is larger than aEf, where E = v/Oh2 is the Ekman number. Recently 
Page (1982) has investigatd the separation of the inner-wall boundary layer for flow 
over shallow (O(Ef ) )  topography in a rotating cylindrical annulus. He found that, for 
any value of Ro/Ef, there is a maximum obstacle slope - for a sinusoidal shape, 
1.8Ef - below which no boundary-layer separation can occur. For larger values of the 
slope, the Rossby number must be smaller, in units of Ef, to avoid separation. 

The only analysis, to this author’s knowledge, on separation criteria for an object 
on a B-plane is that of Merkine (1980), in whose study /3 is O( 1) and Bo % Ef ; we will 
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investigate flow at lower speeds, and shall find, as Merkine did, and also White (1971) 
in an experimental context, that the /?-effect inhibits separation. 

The work reported here began as a result of informal discussions the author was 
privileged to have during the summer of 1981 with Drs Davies and Boyer in regard 
to some of their observations (Davies & Boyer 1982). The experiments, conducted 
at the University of Wyoming in a rotating water channel, indicate that, in part of 
the parameter ranges studied, eastward flow past an obstacle on a t9-plane is 
characterized by a spreading of the streamlines upstream of the obstacle, and a 
marked convergence of those streamlines immediately downstream of the cylindrical 
obstacle (see e.g. Davies & Boyer 1982, figures 5 and 6). 

In  this paper, we restrict the parameters for eastward flow past a short cylinder 
between parallel planes (cf. figure 1) by requiring that l& 4 /? 4 I&. In $2 the 
consequences for the outer flow are shown to be a large upstream wake, bounded by 
free shear layers parallel to the oncoming flow and extending from one plane to the 
other (cf. figures 2 and 3 and 93). All of this structure is essentially two-dimensional, 
and independent of the cylinder height ad. The free shear layers meet the cylinder 
(and its upward extension to the top plane - the Taylor column) at its lateral 
extremes (the ‘shoulders’), carrying large amounts of fluid, which flow round the 
backside of the cylindrical column in a narrow rotational layer. The fluid flows out 
of the layer and into the inviscid region. This layer contains Rossby waves, and is 
discussed in detail in $4. 

The fluid in this Rossby layer slips over the column (including that portion of the 
column coincident with the solid cylinder), and hence a Stewartson +layer is required 
to satisfy the no-slip condition. In  non-/?-plane flow, Walker t Stewartson (1972, 
1974) found that the +layer is nonlinear for Ro = O(l&). In 95 the *-layer analysis 
shows that the layer becomes nonlinear for Ro = O(E//3). Since E//3 Q l$ here, the 
nonlinearity occurs at  a lower speed on the /?-plane. Walker & Stewartson found 
separation occurring above a particular value of R o / B .  so we might expect a similar 
criterion for Ro/?/E. Numerical integration of the nonlinear +-layer equation (cf. $6) 
shows that no point of zero wall shear develops. The structure of the Rossby layer 
above the a-layer is such as to inhibit separation. Apparently, then, separation is 
delayed to Rossby numbers much larger than El/?. 

In $96 and 7 we give details of the flow near the shoulders and at the rear stagnation 
point on the column. 

If the flow past the cylinder is westward instead of eastward as required in this 
discussion, the analysis of $92 and 3 goes through essentially unchanged. The Rossby 
layer and :-layer solutions in $54 and 5, however, while correct for very small Rossby 
numbers, present some real difficulties for finite values of Ro, in particular O(E/B).  
Resolution of this matter must await further work. 

2. Formulation: outer expansion 
Consider a homogeneous fluid confined between parallel planes, whose normals are 

aligned with the z-axis, about which the container rotates at angular velocity that 
varies with the y-direction as Q(1 +By). An object, on the lower of the two planes, 
disturbs the flow, which has uniform speed U far upstream, x = - (see figure 1). 
In this rotating frame the dimensionless Naviel-Stokes equations are 

v-u = 0, (2.1) 

(2.2) Ro(u* V) u + 2( 1 + /?y ) k x u + V p  = E ‘7%. 
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FIQURE 1. Geometric configuration for flow past E cylinder. 

The y-variation in the rotation rate models, of course, such variations in midlatitude 
planetary flows, and is the '/I-plane approximation' (cf. Holton 1979, p. 129ff.). In 
the laboratory, such effects may be achieved, as is well known, by slightly tilting the 
upper of two bounding planes in a water channel. The equations of motion for such 
an arrangement may then be transformed into those above, in a new set of coordinates 
in which the two bounding planes are parallel, with the angular velocity of the frame 
of refereace divided by l-/Iy. The terms neglected in (2.2), resulting from the 
transformation, are O ( p ) ,  O(Ro/I) and O(E/I), which are all negligible if /3 is small. 

We require, of course, that u = 0 on solid surfaces, and, for (x I-+oo, u+i. (The 
velocities have been made non-dimensional with U, lengths with h.) We now restrict 
/I in the following way: 

l % / I @ f i , R o .  (2.3) 

u = U,+€UU,+ ... , (2.4) 

p = p,+€pp,+ ... , (2.5) 

where ord(s) is not yet determined. We know that, at z = 0 and z = 1, the outer 
solutions must satisfy the Ekman compatibility conditions (cf. e.g. Foster 1972) 

We proceed with the outer expansion by writing 

w== - 2  +lfi(e-e) ax ay o n z = @ .  

The expansions (2.4) and (2.5) must be inserted into (2.1), (2.2) and (2.6). Whatever 
the relative orders of Ro, E and /I, the leading-order result is 

2k x uo+Vp0 = 0, 

V ' U ,  = 0. 

To next order, quite distinct force balances may occur depending on the relative 
orders of the three small parameters, The most instructive way to see that is to write 
the ( vorticity equation: 

aw 
R o ( u , * V ) ~ , - ~ ~ E + ~ / I V ,  a Z  = 0, 

3-2 
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FIQURE 2. Outer flow solution. 

Note that, from (2.6), cwl is O(&) ; if only a % I& but Ro = O ( 8 )  one obtains the usual 
equation for Rossby waves; so, then, Rossby waves fill the inviscid flow. However, 
if Ro + p, and since m1 is still O(&), under our condition (2.6), we obtain 

vo = 0. (2.8) 

Thus, away from any thin viscous layers, there can be no lateral motion. All 
streamlines, then, in the outer flow are straight lines aligned with the upstream flow. 
Those lines lying in the range I y I < ymax, where ymax is the maximum half-width of 
the obstacle, intersect the object on its windward side; also, lines from the leeside 
of the obstacle penetrate the fluid to downstream infinity. Clearly fluid cannot flow 
into or originate from the solid boundary of the obstacle, so there must be thin 
boundary layers on the obstacle. 

We now specify the obstacle as a circular cylinder of radius a and height d .  It turns 
out, as we shall see in $4, that there can be no boundary layer to accommodate a 
large mass-flow rate on the upstream side of the cylinder, but one may exist on the 
leeside - actually on the entire circumscribing cylinder of the obstacle. The only 
recourse, then, is that, since auo/ax is zero by continuity, uo = 0 immediately ahead 
of the cylinder. Therefore we have 

vo = wo = 0, (2.9) 
1 

0 

for all x > 0 and for I y I > a, x < 0, 

for 2 < 0 and I yI < a. 
UO ={ (2.10) 

Figure 2 shows the streamlines for this flow. Clearly the discontinuities at I y I = a, 
x < 0, and the intersection of the streamlines with the leeside of the cylinder now 
require us to construct solutions in thin viscous regions to smooth the discontinuities. 
That is the subject of §§3-7. 

3. Shear layers 
We have seen that the outer solution constructed in $2 is discontinuous on I y I = a. 

This discontinuity is smoothed, of course, by retaining some of the terms ignored in 
obtaining (2.9). Writing y--a = (@/b)f# and substituting into (2.1) and (2.2) leads 
to the equation 
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Here $ is the stream function, so 

a=- a$ v=-- a$ 
ag ' ax 

where 6 = ( l & / / 3 ) 1  u is a scaled velocity component. This layer represents a balance 
between the stretching of vortex lines by Ekman pumping and the lateral convection 
of the y-varying frame vorticity. No lateral viscous forces are important in the layer. 

Far upstream, the volumetric flow rate in I y I < a is 2a; at the obstacle, because 
of the result (2.9), the flow rate is zero. What happens is that an am'ount of fluid a 
enters each thin shear layer on Iy I  = a at large negative x and flows into a sink at 
either y = a or y = -a and x = 0. It is this flow that is responsible for the leading-order 
solution to (3.1). Hence we write 

$ = $,+@/3-&,+ ... (3.2) 

@, = aH(@) on x = 0, (3.3) 

= gH(i j )  on x = 0, (3.4) 

and substitute into (3.1); then both $o and @1 satisfy (3.1) subject to the boundary 
conditions 

where H ( x )  is the Heaviside function. The $, term involves the large mass flow 
mentioned above and $1 smooths the u, discontinuity from (2.10). The solution is 
easily accomplished by Laplace transformation, and is 

Clearly both of these solutions have the property that they spread in the upstream 
directions; they are not uniformly valid to x = -a. Notice, however, that (3.1) 
contains (2.8). Therefore (3.1) may be solved in all of x < 0 by writing x = (/3/~@) X. 
Then @ satisfies (3.1) with g replaced by y and x by X. The boundary condition is 
at X = 0 (for X = 0(1 ) ,  the cylinder has infinitesimal X-direction width), where 
(3.2)-(3.4) combine to give 

@ = yH(y-a)  on X = 0 in y > 0 (3.7) 

It may be shown using Laplace transforms that the solution for $ is 

Figure 3 shows the streamlines in x < 0 for a particular value of B/Ek  The shape of 
these lines is quite reminiscent of some of the photographs of Davies & Boyer (1982). 

4. The Rossby layer 
It may easily be shown that the presence of the small B-term in (2.2) does not, to 

leading order, affect the presence of the usual Stewartson layers on the surface at 
r = a. The 4- and +layers smooth the discontinuities in tangential (v, w) speeds at the 
boundary of the Taylor column. We discuss these layers in $5. What is different here 
is the fact that an O( 1) volume flow enters the column at z = 0, y = I a I , flows around 
the column boundary, and then downstream from the leeside of the cylinder. Such 
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FIGURE 3. Streamlines for flow past a circular cylinder with &//3 = 0.01, 
including the Rossby layer on the leeside of the cylinder. 

a flow pattern is not consistent with the structure of either Stewartson layer, but is 
instead accomplished by what we may call a Rossby layer ; it is a layer with the kind 
of force balance present in the shear layers described in $3, and i t  is a detraining 
boundary layer. 

Since this layer involves azimuthal motion along the cylinder, the azimuthal 
component of (2.2) is the dominant equation of interest here. Just as in conventional 
boundary-layer theory, the radial momentum equation indicates that there is no 
pressure change across the layer, so that the azimuthal pressure gradient from the 
external, inviscid flow, (2.9) and (2.10), is impressed on the fluid in the layer. Then, 
writing r-a = (@//3) 6,  + = -a$, and, for the azimuthal velocity component, 
w = a(/3/a)iT, and substituting into the azimuthal component of (2.2), we obtain, on 
letting E+O and p+O, 

h ( u-+v- : -3 +i~+$cosO=-?jsin26, 

where h is the group of parameters Ro/3/2E, which measures the importance of the 
nonlinear effects in the layer. Note too that (u, v) are now (and not as in $5 2 and 3) 
radial and azimuthal velocity components, as they shall be throughout the remainder 
of the paper; 6 is the standard polar angle, with 0 = 0 along the downstream x-axis. 
As mentioned in $1, we now suppose that Ro = O(E//3), so that h is O(1). Equation 
(2.1) is satisfied by 

The boundary conditions are no flow through the surface, and matching to (2.9) and 
(2.10), viz $ = o  onE=O, V = O  o n e = $ ,  (4.3) 

$+-sine for [+a. (4.4) 

Remarkably, (4.1), on 6 = 0, reduces to a relatively simple, and in principle 
integrable, equation : 

(4.5) 
aiT - 

ae hiT-+v+isin28 = 0. 

Solution of (4.1)-(4.5) is easy for A = 0, namely 

$=-[1-eexp(-6cos8)] sinB. (4.6) 
However, for any h + 0 the solution is complex indeed, as we shall see below. 
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FIGURE 4. $ = 0 streamline in the Rossby layer for h = 0.025 (-) and 1.0 (-----). 

Examination of the solutions of (4.5) may be most easily done in a (V, @-space. (This 
is actually a phase-plane for the Lagrangian coordinate 0.) We show in figure 4 (the 
solid line) the nature of the solution for h < a; the solution trajectory proceeds from 
6' = to 0 = 0. The singularity at !p is a saddle point; the singularity at  0 is a stable 
node. For the dashed line in figure 4, A 2 a, and, though the first singularity is still 
a saddle point, the one a t  the origin has become a stable spiral: # oscillates about 
# = 0, and the trajectory actually passes beyond 0 = 0 ! This phenomenon signals the 
onset of Rossby waves in the boundary layer. 

Actually, a similar analysis may be performed for other streamlines. If we regard 
# as a function of 0 and $, then (4.1) becomes simply 

For the half of the Rossby layer in the first quadrant, $ < 0, so there is a singularity 
at  0 = -sin-'$. So long as A < f the singularity is a stable node as above; but, as 
above, when h is larger than a the singularity may be a stable spiral or a node 
(cf. figure 5). In  the vicinity of -sin-' $, (4.7) has the approximate solution 

= qe-e,), 
K = [ - i & (i - 4h C O S ~  e,)!]/2~ where 

and 8, = -sin-'$. So streamlines oscillate about 0, = -sin-'$ provided that 
cosa 8, > (4h)-'. If one writes (4.7) in terms of a Lagrangian variable 8, (4.7) becomes 
the equation of a damped oscillator with a nonlinear spring; h = a is 'critical 
damping' for the system. 
An important thing to note in the phase trajectories of figure 5 ( b )  is that they 

intersect 6 = e, many times for A B f if 8 < cos-'[(4A)-t]. Since e = O is a line of 
symmetry for the flow, these streamlines also may intersect other lines from 0 < 0 
at 8 = 0, for A Z a. That is, in fact, imposaible, however, and the only resolution is 
that there must be a square region of dimension B/B that turns the flow around near 
8 = 0 (cf. figure 6) ; in figure 5 (b), that implies moving vertically along the 0-axis from 
the point of intersection in B < 0 to a point of intersection in # > 0, and then using 
the next leg of the same trajectory in V > 0. For the case shown in figure 5 (b), h = 0.5, 
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FIQURE 5. Streamlines in a (a, @-plane: (a) $ = -0.3 for 
h = 0.025; (b)  3 = -0.3 and -0.75 for h = 0.5. 

i. 
FIQURE 6. Diagram of the boundary- and shear-layer structure near the circular cylinder. 
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FIGURE 7. Configuration of Rossby-layer streamlines for h = 4. 

the value of 0, is and is noted on the graph. All trajectories terminating to the 
left of 8, do so in a spiral, and those to the right in a node. If one is to construct 
streamlines in physical space from these solutions in the (V,O)-plene then solution of 

36 1 
a$-; 
_ -  

is required. We show, in figure 7, schematic representations of typical streamlines 
under such an inversion, utilizing the ideas given above. To date, no detailed 
numerical solutions have been constructed for h 2 a; the numerical solution of (4.7) 
is easy enough, but the repeated crossings of 0 = constant lines by the same stream- 
line make numerical implementation of (4.8) a nightmare. The appearance of the 
spiral singularities noted above is responsible, of course, for the wavelike streamline 
shape, and also the presence in the solution of a, string of closed eddies on the line 
of symmetry, t9 = 0. 

It has been possible to construct numerical solutions of (4.5), of course. If C4, is the 
solution at OP, with i = 1 at 0 = in, central differencing of (4.5) leads a nonlinear 
difference equation whose exact solution is 

where 

We show, in figure 8, solutions of this equation for typical values of h and for 
h = 0.0157, i.e. for 100 points between t9 = in and 0. 

Equation (4.1) also has a similarity solution near t9 = in. If we write $ = P(Z), where 
I = (+t - 0) 6, substitution into (4.1) gives the following ordinary differential equation 
for F: 

A(F)2--F’-F-1 = O ,  (4.9) 

P(0) = 0, F ( w )  = -1. 
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FIGURE 8. Surface speed in the Rossby layer for A = 0.025 (-), 
0.25 ( . . . - a ) ,  0.5 ( - - - - - )  and 5 (---). 

s2-1 
F = - l + -  

4A ' 

The solution is easily found to be 

where S is given implicitly by 

(4.10) 

(4.11) 

ForAJ.O,S+l+22Aexp(-Z)from (4.11), andso 

F+-l+exp(-Z), 

which agrees with (4.6). 
The Rossby waves that occur here are the only Rossby waves present in the flow 

in this range of parameters; they are confined to this thin layer. Of course, as Ro 
increases above EB, the waves are convected downstream, out of the layer, and into 
the whole expanse of the fluid downstream of the cylinder. 

Note too that the neglect of the nonlinear terms in the free-shear-layer equations 
of 93 requires that Ro be small compared with E f l p f .  If A = O(1) this simply leads 
to the requirement that &?& -4 1 ,  which is obviously satisfied. In  other words, the 
Rossby layer (and, as we shall see, the +-layer) becomes nonlinear before the shear 
layers at y = I a 1 . The linearity of the Ekman layer is also assured provided only that 
,8 4 1,  so long as A = O(1). 

5. Stewartson layers 
and + Stewartson layers. 

Whether the cylinder has height 1 or d < 1 ,  the structure of the :-layer is as though 
the cylinder were solid (Foster 1972). The outer, Rossby layer, whose thickness is 

is thicker than the a layer provided also that /3 4 I&. In combination with 
(2.3) and the discussion in 94, the complete parameter restriction is then 

As noted previously, on r = a there are the usual 
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Were 8, on the other hand, of order E?, the Rossby layer and the +-layer would merge 
into a single viscous layer containing damped Rossby waves. We saw from $4 that 
the presence of the nonlinear term in the Rossby layer is valid for Ro as large as E/B,  
which is large cornpared with E f .  If 8 were as large as Ef, Ro could be no more than 
O(Et) ,  so the nonlinearity enters at  an even lower speed in that case. 

One-third layer 
The f-layer, the innermost of the two Stewartson layers (see figure 8), to lowest orders 
in the asymptotic expansion, is just the same as the f-layer discussed in Foster (1972). 
If we expand the azimuthal velocity, for example, in the usual way, we have 

The scale derives from the order of the azimuthal velocity in the Rossby layer 
of $4. w has a similar expansion, and definition of the usual $-layer variable 
r] = ( r - a ) / &  leads, on substitution into (2.1) and (2.2), to the familiar $-layer 
equations, with neglected terms O(Ef)  : 

v = E-?/3(VO+&Vl+EJV,+ ...). (5.2) 

where the (v ,  w) stands for any term in the series. The expansion must be inserted 
into the Ekman conditions (2.6) to obtain the boundary conditions on z = 0 , l .  That 
process leads to the following conditions : 

zy, = 0, w1 = 0 on z = 0 and z = 1. (5.4) 

Again (vo, wo) and (v l ,  wl) separately satisfy (5.3). In  addition, the solutions must be 
matched to the :-layer solutions, which we denote by 'v and W. Those matching 

(5.5) 
conditions are9 for v ,  vo+ V(O+)  for r]+ f a ,  1 vl+V'(O+)r] for r]+fa. 

Solutions to (5.2)-(5.5) depend crucially on the nature of the singularities of the 
solutions of (5.3), as detailed by Moore t Saffman (1969); the analysis of a $-layer 
containing a 270' corner as we have here was given by Foster (1972). While not 
repeating that analysis here, suffice it to say that the (vo, wo) .and (v l ,  wl) solutions 
are found to be regular. Use of a procedure used by Hocking (1967) shows that there 
is only one regular solution for (vo, w,,) also satisfying the requirement that vo = 0 on 
that part of r] = 0 on which z < d,  viz wo = 0 and vo = 0. Therefore we obtain from 

V ( O + )  = V ( 0 - )  = 0. (5.6) (5.5) 

Since there is no interior flow over the bump ( r  < a,  z > d )  there is therefore no 
f-layer on r = a -  (cf. Foster 1972). We proceed now to a discussion of the flow in the 
;-layer. 

One-quarter layer 
The tangential velocity at  5 = 0 in the Rossby layer must be brought to zero at r = a 
by the +-layer. So we write r - a  = EfY for the +-layer coordinate, v = - (8/Ef) V 
and u = ( B / E f )  U ;  substitution into (2.1) and (2.2) gives 

(5.7) 

au av -+- = 0, 
a y  as 

+2(V- Ve)-2ahVe3 = -, 
dV aaV 
ds aYa 
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:K - 0 (rad) 

F I G ~ E  9. Surface stress in the f-layer solution for A = 0.025 (-), 
0.25 ( - . - . - ) ,  0.5 (---- - )and 5 (---). 

where s is a streamwise coordinate given by u(!jn-0). The boundary conditions 
require that this solution match the Rossby-layer solution of $4 as Y-tco. If we 
denote the solution of (4.5) evaluated on 6 = 0 by V,(s) then 

V+V, as Y+co. (5.8) 

V = O  o n Y = O .  (5.9) 

As we have just determined, the structure of the $-layer requires, from (5.6), that 

For very small A, (5.7) linearizes to the usual f-layer equation. The solution for 

V = sin 0 cos 0 (1 -exp ( -  4 2  Y)). (5.10) 

Numerical solutions of (5.7), for A not small, have been obtained by Buckmaster 
(1969) in a different context, for different boundary conditions, and related by Walker 
& Stewartson (1972) to the:-layer solution for flow past a circular cylinder (noj3-effect). 
They found that the solution develops a point of zero shear stress, indicative 
apparently of separation, whenever A, in our notation, is larger than a. That 
corresponds, in their case, to a particular ratio of Roll& Since, unlike the Walker 
& Stewartson problem, V, itself is a function of A, resulting as i t  does from the 
Rossby-layer structure, the calculation must be redone for each value of A. 

A = 0, corresponding to the linear Rossby-layer solution (4.6), is 
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The numerical solutions reported here have been obtained by differencing (5.7) with 
central differences in the Y- and s-directions. Since no flow reversal occurs, there is 
no difficulty with the stability of the Crank-Nicholson algorithm owing to the 
convection terms. Figure 9 shows the result of the calculations in terms of shear at 
the wall, aV/aY at Y = 0. In  the numerical results reported here, the Y-step is 0.01, 
with 100 steps total, and the s-step is 0.001 963. The truncation error has been checked 
by reducing the step sizes by a factor of 2 ; the results are altered by no more than 
0.44 % from 8 = ?gt to within 2.8" of 8 = 0 for A = 0.025; at 0.68" the error is 2.0 %. 
Very close to the rear stagnation point, at 8 = 0.12O, the errors are 17 %. So, except 
for a very small region near 8 = 0, the solutions given here are quite accurate. Note 
that a point of zero shear does occur at  8 = 0 for all values of A < a; however, for 
larger A-values, owing to the development of Rossby waves above the +-layer, the 
zero shear does not advance upward from 8 = 0; in fact, the shear at 8 = 0 becomes 
positive. 

Thus we conclude that, unlike the situation that occurs for /? = 0, the presence of 
an outer wavelike layer above the :-layer delays the onset of separation to higher 
Rossby numbers than those one might relate to the appearance of the nonlinear term 
in the shear-layer equations. Even though the speeds are very high in this +layer, 
for d l  Rossby numbers of order EF1 and smaller, no separation can occur. 

In the :-layer segment above, the tacit assumption is that nonlinearities are not 
important. A careful evaluation of the orders of magnitude of the terms neglected 
in (5.3) shows the nonlinear term to be O(A@), so that the E! term in (5.2) will be 
first affected. 

6. Shoulder region 
All of the fluid that flows through the shear layers (93) on y = + a  flows into the 

Rossby layers at their beginnings at the shoulders of the cylinder (at 8 = kin).  In 
this section we show that a region in the immediate vicinity of those shoulders 
facilitates the connection between those two singular layers. Figure 6 illustrates the 
scaling of this joining region, which accepts the fluid from upstream and turns it, to 
flow round the back of the cylinder. 

A general investigation of all of the possible regions near 8 = 4% and r = a, though 
it is for brevity not repeated here, shows that there is only one 'distinguished limit '. 
That corresponds to writing the coordinates as r -a  = S2p and 8 = ?g t -Sx ,  where 
6 = (@//3)i. On substituting into (2.1) and (2.2), and eliminating the pressure, we 
obtain the vorticity equation for the stream function $ = -a$ of $43 

The boundary condition on the solid surface is 

$ = o  o n p = ~ .  

Writing the solution in the Rossby layer in these coordinates anL taking the limit 
6+0 leads to the matching condition for x+co : 

t The author is grateful to a referee for pointing out difficulties in an earlier version of this 
equation, which then led to the proper analysis. 
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A similar procedure for the leading-order solution for the shear layer in $3 results 
in the matching condition for x large and negative, viz 

Finally, for p+co the solution must match to the outer solution, so 

@-+-a forp+co. (6.5) 

For x+- 00, (6.1) has an asymptotic solution of the form 

Substitution of (6.5) into (6.1), and considerable algebra, leads to a sequence of 
equations for A, B, . . . : 

A"+2aA' = 0, (6.7) 

C"+2aC'+4C = (A')2, B = [ C(i3)ds 

The solution of (6.7) that satisfies (6.2) and (6.5) is, of course, 

A = - (1 -4 erfc (a)), (6.9) 
which means, under the matching condition (6.4), that the (6.6) solution indeed 
matches to the shear layer for x+-co, as required. The solution of (6.8) may be 
obtained by standard methods; suffice it to say here that, for 

B - const x r 9  e-O* for a+m. 

In similar fashion, an asymptotic solution to (6.1) for x+co may be found: 

11- - R(PX)+X-ST(PX) for x+*, (6.10) 

where substitution into (6.1) gives an equation for R that is identical with (4.9) for 
F(1); T(7) is a solution of the rather complicated equation 

(1 + 3AR') T" + (1  - 2AR') T' - 3AR"'T = -7R'. (6.11) 

So, by the boundary conditions (6.2) and (6.5), R(7) is identical with P(1). Some 
WKB-style analysis leads to the asymptotic solutions for R and T :  

(1 +4A)4- 1 
2A 

e-T for 7+co, R(7) - - 1 + (6.12) 

(6.13) 

Hence we have demonstrated that solutions to (6.1) match to the Rossby layer for 
x+m, using the expansion (6.10), and match to the shear layer for x+- 00, utilizing 
the expansion (6.6). 

7. Rear stagnation point 
Near the rear stagnation point on the cylindrical column that circumscribes the 

obstacle, $5 indicated that, for A > a, the azimuthal velocity in the Rossby layer is 
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not zero. (For A < 4, v+O, as 8+0, so there is no difficulty.) The Rossby-layer 
scalings break down for 0 = O(,@//?) ,  so to investigate this region of non-validity of 
the Rossby-layer equations we write r - a  = (a//?) 5, as in the Rossby layer, and 
8 = (,@//3) 8. Insertion into (2.2), elimination of the pressure, and use of the 
continuity equation to define the stream function as 
equation for $ in the region: 

before, leads to the vorticity 

= 0, (7-1) 

where 

For A = 0 ( 1 )  the proper limit of (7.1) for E+O, under (5.1), retains the first term only, 
whose solution is 

V: $ = G($). (7.2) 

Note that (7.2) is not the solution of (7.1) unless A >> a//?, which again is not a 
problem, since there is no need for such a region as this unless A > a. 

The boundary conditions are 

$ = O  o n t = O ,  8 > O a n d o n 8 = 0 ,  [ > O .  (7.3) 

In addition, the solution must match to the outer flow for [+-a, and to the 
Rossby-layer solution for 8 .T 00. Thus 

$+O forE-xo, (7.4) 

$+$R([,o) for 8+00, 
where FR([,t9) denotes the Rossby-layer solution of $4. The form of the function 
$,([, 0) determines the function a($). That means that the equation 

must be inverted to obtain G($); then the solution may proceed. 
Solution of (7.2) under (7.3)-(7.5) is technically difficult, even for simple forms of 

$&,O). Since, as discussed in $4, there is no analytical or numerical solution 
available for the Rossby layer, the function gR([,O) is not known. However, the 
discussion there indicates a great deal of information about the form of the solution, 
if not the details. From figures 4, 5 and 7 it  is clear that the quantity $,([,0) is 
oscillatory, the boundary conditions indicating that it vanishes on both [ = 0 and 
[ = 00, so there is no net flow into this region. 

Some indication of the relative complexity of this turning region may be given by 
examining the asymptotic behaviour for 8+00. Let 3 = $,([, 0) + q5, where I q5 I 
should be arbitrarily small for 8 sufficiently large. Substitution into (7.2) leads to the 
equation for q5, viz 

where we have writtenf([) for G'($R). Actually, differentiation of (7.5) with respect 
to [ givesf([) = 3;11/$k, which is more useful. Separation of variables in (7.6) gives 
the bounded solution 

q5 = Jm H(E, k) e-kadk, 
0 

(7.7) 
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and H(6, k) is the solution of 
H” = (f(5,-$) H 

( (  )’ denotes a 5-derivative). Boundary conditions (7.3) and (7.4) give conditions 
on H: 

Since we are interested in the solution for 8 + a ,  Watson’s Lemma applied to (7.7) 
leads to the asymptotic form for 4: 

1 

H ( O , k ) = H ( c O , k ) = O .  (7.9) 

(7.10) d, - = H ( ( , O )  for 8 - t ~ .  e 
For Ho(<) = H ( [ , O ) ,  (7.8) shows that 

fl; = f ( 5 )  Ho. (7.11) 

Using (7.9) and integrating the product of (7.11) and H,, we find that 

(7.12) 

from which we find a necessary condition for (7.10) to exist: 

f < 0 for some values of 5 < co. (7.13) 

Since f ( f )  is not known because of the difficulties of the Rossby-layer solution, we 
turn to examination of this solution behaviour when is also large. Linearizing (4.1) 
for [+cc easily leads to the large-t; form of the solution on 6’ = 0. It is 

- 

v 15=o = 9 (E ,o )  - const x cos ( w e + @ )  e-5/2A, (7.14) 

i f w  = !j(4A- 1): and @ is a phase-angle. Sincef= q;1/pR, (7.14) gives 

(7.15) 

Obviously (7.15) guarantees that the solvability condition (7.13) is satisfied. 
Solution of (7.11) and (7.15) may be accomplished by WKB techniques (Bender 

& Orszag 1978); (7.11) has an infinite number of turning points, which are separated 
in 5, for large 5 - from (7.15) - by x / w .  The solution, which we do not write here, takes 
the form of exponentials and oscillations at each value of 6, corresponding to right- 
or left-side of the turning points. 

Thus an asymptotic solution to (7.2)-(7.5) that matches to the Rossby-layer 
solution appears to exist, although it is complicated. 

In $5  we gave the structure of the +layer, which takes the non-zero surface speed 
3 at the base of the Rossby layer to zero, in order to satisfy no-slip. Since L&/B 9 Id, 
an extension of that a-layer exists beneath this corner region. Since, by (7.3), @ + O  
as e + O ,  the +layer will see a rapid decline in edge velocity, and may separate; 
however, since all of this occurs in a tiny region o( 1) on the outer scales, if separation 
indeed occurs here, it  provides insignificant consequences to the global flow structure. 

The author is grateful to Professors Burggraf and Conlisk for several helpful 
discussions on this work. This material is based upon work supported by the National 
Science Foundation under Grant ATM-8212838. 
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